Multiscale Turbulence excited by a pulsed current sheet

Walter Gekelman ,Stephen Vincena,
Patrick Pribyl , Brett Jacobs, Eric Lawrence
(UCLA Department of Physics and Astronomy),
Paul Kintner (Cornell University,Dept. of Engineering)
Franklin Chiang (UCLA Dept of Engineering)
Noam Katz (Physics Dept, MIT)

Overview of the experimental device

Cathode discharge plasma
Highly Ionized plasmas $n \approx 3 \times 10^{12}/cm^3$ Reproducible, 1Hz operation
> 4-month cathode lifetime
Up to 2.5kG DC Magnetic Field on axis
Plasma column up to $2000R_{ci}$ across diameter
Over 450 Access ports, with 50 ball joints
Computer Controlled Data Acquisition
Microwave Interferometers
Laser-Induced Fluorescence
Large variety of probes

Operates as a national user facility http://plasma.physics.ucla.edu/

Electric Field Probes

Challenge; They must be Debye scale in size $\lambda_D = \sqrt{\frac{KT_e}{4\pi ne^2}}$

In space (auroral ionosphere) λ_D is 1-10 m

In LAPD λ_D is 30 microns

E Field Probe

Bond Pads

Probe Tips

E probe and air-cooled circuit box

Circuit diagram (1 probe)

AMPLIFIER 5 MHz - 1.8 GHz

Electric field in current channel

Field Components

Spectra E_{perp}

Spectra Eparallel

Wavelet Analysis

E
Perpendicular
to
Background
Magnetic

Field

Wavelet Analysis

E Parallel to

Background Magnetic

Field

Probe in electron beam (low density <10⁹ cm⁻³ plasma)

Background Plasma

Higher Frequencies- Langmuir Waves

- The probe response was less than 2 GHzin a separate experiment at lower density we searched for electron solitary structures.
- They are Debye scale size entities which move as fast as v_{te}

Spiky turbulence

 $V_{the} = 1X10^8 \text{ cm/s}$

Conditional Averaging

Key issues raised in this experiment

- 1) Are low frequency phenomena (e.g. Drift Alfvén waves, flows) coupled to high frequency phenomena (lower hybrid, whistlers and Langmuir waves)?
- 2) What is the electron distribution function f(r,v,t)?
- 3) What is the electron (high frequency) physics in a magnetoplasma?

Velocity Analyzer Grid Area (Cross Section)

Design Parameters

- Angle of Acceptance (desire less than 10 deg):
 - 2 µm hole, total thickness 30 µm à half angle = 3.82 deg
 - 2.5 µm hole, total thickness 30 µm à half angle = 4.76 deg
- Exposed area
 - 160x160 array of 4 μm² holes, 4 μm between holes.
 - 1 mm x 1 mm head à 10.24% open area
- Current being carried
 - Expected current density: 1000 mA/cm² à 1x10⁻⁵ mA/μm²
 - 160 * 160 * 4 * 1E-5 = 1.024 mA (maximum collected)
- Gap closing force
 - For g = 15 μm @ 25 V: F ≈ 10 μN

$$F = -\left(\frac{\varepsilon_r \varepsilon_o A V^2}{2g^2}\right)^{\frac{1}{2}}$$

Miniature e-beams

Emitter fabricated at Univ. of Michigan

